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Introduction1

Researchers in mathematics and mathematics education and cognitive
psychologists have long recognized that a very important, if not essential,
component of successful problem solving is the ability to translate between
different symbolic representations of information (e.g., Clement, Lochhead, &
Monk, 1980; Hooper, 1981; Janvier, 1987; Kaput, 1987; Lesh, Post, & Behr, 1987;
Lesh, Landau, & Hamilton, 1983; Nesher, 1982; Shavelson, 1981; Shavelson &
Salomon, 1985; Silver, 1985), Problem solving often involves translating from the
symbolic representation of the problem as given (typically words and numbers) to
another symbolic form that more readily leads to a solution (e.g., diagram, graph,
picture, algebra, words, or some combination of these). Yet, as has been
demonstrated in some well known stu&es, students at all ages have difficulty
translating from one representation to another (e.g., Clement et al., 1980; Galvin &
Bel, 1977; Nesher, 1979; Paige & Simon, 1966).

Although researchers and theorists recognize the importance of being able to
translate among symbolic representations, we have only a limited understanding
about the exact nature of students' abilities and difficulties in making translations.
Furthermore, we know little about the extent to which their patterns of
performance are linked to the symbolic representations and kinds of translation
used in instruction.

The main issue addressed here is that students rarely have been asked to
solve problems on the same topic that systematically vary the symbolic
representation of both the problem as given and the response that is required. Only
a systematically varied set of problems can reveal the skills students have in dealing
with different kinds of translation. That is, a comprehensive set of problems is
needed to know whether it is possible to generalize students' skills in translation
from one problem type to another. Furthermore, students' ability to translate across
symbolic forms cannot be separated from the effects of instruction. If students can
perform translations that are routinely practiced during instruction but have
difficulty performing translations that are not covered in instruction, differences in
performance would be attributable to instruction, not to inherent difficulties in
certain kinds of translation. Systematically investigating the relationship between
the kinds of translation used in instruction and students' problem solving processes
and performance is an important first step in clarifying the role of instruction.

The study reported in this paper was designed to address the issues just
described. We collected information about students' performance on problems
varying in symbolic form and the kinds of symbolic representations and translation
used in instruction. We paid particular attention to the symbolic form of the
response required as well as that of the problem given. In a previous study
(Shavelson, Webb, Shemesh, & Yang, 1987), the symbolic form of the response
required influenced students' problem solving processes andperformance more than
the form of the problem given. In particular, students applied the same numerical
or algebraic algorithm whenever the response required was numerical, regardless of
the form of the problem as given, but the response required (numerical or verbal
description) markedly influenced how students solved the problem. The present
study, then, used a greater variety of symbolic forms of the response required
(graph, picture, number, algebra, words).

1 We would like to thank Linda Robertson, Russell Wada, and John Novak for their assistance
in this study.
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Method

Sample. The sample consisted of 29 st .nts enrolled in an Algebra 11 class
in an eight-weP1/4 summer instructional program ,or minority students. All students
were Blaa or Hispanic and most were about to enter grade 11.

Materials. For two topic areas, solving simultaneous equations in two
unknowns and distance-rate-time relationships, sets of problems were developed
that varied the symbolic form of the problem as given (words in a story problem,
graph, diagram, algebra) and of the response required (words, graph, diagram,
algebra). All cther aspects of the problems (e.g., context, numbers used, complexity
of the equations) were controlled to make the problems as parallel as possible
except for symbolic form. Approximately half of the problems were open-ended;
the remaining problems were in multiple choice form to shorten the time necessary
to solve them. Even for problems in multiple choice form, however, students were
encouraged to explain reasons for selecting their responses.

Data on teacher instructional methods came from the printed materials the
teacher used, students' notes during the classes, and interviews of the teacher. This
information was analyzed to determine the variety of symbolic forms used in
instruction and kinds of translation explicitly discussed.

Results

The analyses presented focus on problems that concern the same topic but
vary either the symbolic form of the problem as given, the symbolic form of the
response required, or both. The two topics are solving two equations with two
unknowns and issues related to distance-rate-time.

Solving Two Equations With Two Unknowns

Four problems on the individual test that concerned solving two equations
with two unknowns varied both the symbolic form of the problem as given (word
problem vs. algebraic equations) and the symbolic form of the response required
(numerical vs. verbal). Problem 1 was a traditional word problem that required a
numerical response; problem 2 presented two equations for students to solve;
problem 3 presented a word problem and asked students to explain, without solving
the problem, why two particular erroneous solutions were incorrect; and problem 4
presented two algebraic equations and asked students to select the word problem
best described by the equations (see Figures 1 to 4 in Appendix A).

Students' responses to these problems were scored in two ways: presence of
conceptual and procedural errors. Examples of conceptual errors included setting up
the equations incorrectly (problem 1), trying to substitute one equation into itself
(problem 2), insisting that erroneous solutions to a word problem were correct
(problem 3), and selecting a word problem that did not correspond to the equations
(problem 4). Procedural errors consisted of arithmetic mistakes, such as incorrectly
multiplying an equation by a constant (particularly negative constants). initially,
students' responses were scored according to the severity and frequency of errors.
However, since the results were nearly identical to those scoring only the presence
vs. absence of a conceptual or procedural error, the latter scoring is presented here
for parsimony. A score of 1 indicates no error; a score of 0 indicates an error.

Individual performance. Table 1 (see Appendix A) presents the means and
standard deviations for conceptual understanding scores for the four problems. The
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data were analyzed using a two-way repeated measures analysis of variance (symbolic
form of problem as given vs. symbolic form of response required). A the results in
Table 1 suggest, there was no main effect for either the symbolic form of the
problem as given [F(1, 17) = 0.49, n.s.] or the symbolic form of the response required
[F(1, 17) = 0.49, n.s.]. The interaction between the two factors, however, was
significant [F(1, 17) = 11.33, p < .005]. Student performance was highest when the
symbolic form of the problem as given corresponded to that of the response
required (word problem > words; algebraic > numerical). Student performance was
significantly worse when the symbolic form of the problem as given did not
correspond as closely to the symbolic form of the response required (word problem
> numerical; algebraic --> word problem). These results suggest that translation from
one symbolic form to another ((rom problem as given to response required) added a
degree of difficulty not found in the other problems.

Pairwise correlations were computed to examine whether individual
performance was consistent across problems. None of the correlations were
statistically significant. This result shows that individual students varied in their
ability to translate across symbolic forms. For example, mean performance was
similar for items 1 and 4, but individuals who did well on item 1 (word problem -->
numerical response) were not necessarily the same individuals who did well on item
4 (algebraic equations --> word problem). The same interpretation applies to items 2
(algebraic equations --> numerical response) and 3 (word problem -->words). Ability
to perform one kind of translation does not predict students' ability to perform
another kind of translation.

Data about performance on procedural aspects of the problems (arithmetic
skills) are presented in Table 1. (Item 4 did not measure procedural skills and so is
not included here.) A one-way repeated analysis of variance showed no significant
differences between mean procedural scores [F(2,34) = 0.43, p < .66]. Students'
tendencies to make arithmetic errors did not depend on the kind of translation
between symbolic forms Tequired by the problem. The correlation for procedural
performance was statistic "v significant (r = .61, p < .005) for at least on one pair of
problems (1 and 2). This lests that, for these two problems, an individual
student's procedural perfoa...tance was consistent. Conclusively, the results show
more consistency of performance across problems for procedural skills than for
conceptual understanding. If one is interested in measuring procedural skills, the
type of problem that is given to students to solve is less critical than it is for
measuring conceptual understanding.

Correlations were computed between conceptual and procedural
performance for each item to measure students' consistency of conceptual
understanding and procedural skills. The correlation was statistically significant (r =
.38, p < .05) for only one item (2), suggesting that students' conceptual
understanding and procedural skills are largely uncorrelated.

Relationship betwerm student performance and instruction. The
interpretation given of the findings in Table 1 is that translation between different
symbolic forms makes problems more difficult for students than translation between
symbolic forms that closely correspond. An alternative explanation is that the
performance shown in Table 1 might be a refleci ion of instructional experience,
rather than due to inherent difficulties with translation per se, with the higher
performance corresponding to kinds of translationbetween symbolic forms that
were covered and practiced exte lively in the class and the lower performance
corresponding to kinds of translation that were not covered or practiced in the class.
To test such an interpretation, information about students' instructional experiences
was collected from various sources: course syllabi, handouts, quizzes, tests, homework
assignments, readirg materials, students' notes taken throughout the course, and
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interviews with the instructor. Analysis of the materials indicated that instructional
experience did not account for the results reported in Table 1. Students had
considerable practice with all types of problems with the exception of problem 3
(explaining why erroneous solutions to a word problem were incorrect). Yet
performance on problem 3 was near the best among the four problems. Students
had the most practice solving word problems (translating between verbal
presentation and numerical response) and generating word problems that
corresponded to pairs of equations (translating between algebraic equations and
verbal descriptions), and yet showed the worst performance on problems of these
types.

Distance-Rate-Time Relationships

Two kinds of problems concerning distance-rate-time relationships appeared
on the test: problems assessing whether students knew and could apply the formula
D=RT (distance = rate x time) as well as substitute the correct values into the
formula, and problems assessing their understanding of relative speed from graphs of
time vs. speed. Each problem type is considered in turn.

Applicaton of D=RT formula. Three problems on the test measured
students' ability to apply the formula D=RT (see Figures 5 to 7). Problem 5 posed a
simple word problem for students to solve. Problem 6 presented a graph of time vs.
speed and problem 7 posed a similar problem as a word problem; both problems
asked students to select the correct numerical expression for the distance traveled.
Problems 6 and 7 were designed to be as comparable as possible to test the effects of
the symbolic form of the information given (graph vs. verbal description). As was
the case for the problems involving solving two equations with two unknowns,
scoring for severity of errors and scoring merely for the occurrence of errors
produced nearly the same results; the results of the latter scoring method are
presented here for parsimony. The problems were scored in two ways: (a) a scure of
1 was given if students gave or selected the correct relationship among variables
(D=RT) and a score of 0 was given for giving or selecting the wrong relationship
(D=T/R), and (b) a score of 1 was given if students selected the correct times and
speeds and a score of 0 was given otherwise.

Student performance on the three D=RT problems is given In Table 2. A
one-way repeated measures analysis of variance of the scores for applications of the
D=RT formula was signIficant [F(2,34) = 6.18, p < .006]. Further analyses showed
that the difference between items 6 and 7 was not significant. This result suggests
that the symbolic form of the problem as given (graph vs. word problem) had little
effect on mean performance, possibly because the response required (numerical
expression) was the same in both cases. Interestingly, however, the correlation
between problems was not significant (r = .06), showing that students who could
correctly select the D=RT relationship for one problem could not necessarily do so

on the other problem.

The superior performance of students on problem 5 suggests that students'
ability to apply the D=RT relationship on a simple one-step problem does not imply
that students will be able to apply the relationship in a multiple-step probkm.

Students' performance on these three problems on their ability to select the
correct numbers for rate and time is also given in Table 2. A one-way repeated
measures analysis of variance was not significant [F(2, 34) = 2.53, p < .101.

Furthermore, the correlation between problems 6 and 7 was significant (r = .54, p <

.01). (Correlations with problem 5 could not be calculated due to lack of variance for
that problem.) These results suggest that students' ability to select the correct
numbers for rate and time were consistent across these problems and did not

4..
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depend on the symbolic form of the problem as given nor on whether the problem
was one-step or multi-step.

Understanding speed from graphs. Figures 8 to 11 give the four problems
that assessed students' understanding of speed from graphs of time vs. speed. The
direction of translation in the four problems were the following: graph to words in
problem 8, picture to graph in problem 9, words to graph in problem 10, and graph
to picture in problem 11. Performance on these problems (on a 0 vs. 1 scale as (or
the previous items) appears in Table 2. A one-way repeated measures analysis of
variance was significant [F(3, 57) = 9.75, p < .001]. Post hoc comparisons revealed
that problem 8 was kosnificantly easier than the other problems, and that problems 9
and 11 were significantly different.

In comparing the performance of students across these problems, it is
reasonable to suspect that problem 8 was easier than the rest due to the following:
(a) it involved car traveling on roads rather than biking uphill and downhill, and (b)
it involved only two nonzero speeds. Nonetheless, we still believe that student
performance would have been good had those oti er features been introduced. If
so, then translating from a graph into words was the easiest task for students. (Of
course, this problem should be revised in future st idles to make it more comparable
to the others.) Similarly, problem 11 may have been more difficult than the e?thees
due to the lack of a "stop" rather than the particular direction of translation (grap.e
to picture). Even with these qualifications, the difference in performance suggects
that some directions of translation are easier than others.

All of the correlations among problems 9, 10, and 11 were statistically
significant (ranging from .42 to .65, p < .03 to p < .002). The correlations with
problem 8 were not significant due to the lack of variability in pedormance on this
problem (all students except one got it right). These results suggest that the order of
difficulty of the kinds of translation was consistent across students.

Relationship between performance and instruction. Analysis of the course
materials and interviewing the instructor revealed that students had practice with all
of these types of problem& In fact, for translating between graphs and other
representations, students worked on problems that were considerably more complex
than those used in the current study. Therefore, differences in performance on
these problems were probably not due to differential exposure to them in the
course.

Discussion

This study ha.) several implications for research and practice in mathematics
education and testing. First, p:esenting students with only conventional symbolic
representations of problems (typically numerical, algebraic, or story problems
requiring numerical answers) is likely to give a limited picture of students'
mathematical problem solving abilities. Students can memorize algorithms for clearly
identified problem types presented in conventional ways (e.g., see Mayer, 1981)
and yet be unable to solve problems involving the same concepts but presented in
different symbolic forms.

Second, it is possible to understand students' difficulties in translating among
symbolic representations by systematically varying the symbolic form of problem
and response required. Such a test or measure can have important diagnostic value
in the classroom. The data presented here suggest that the symbolic form of the
response required plays a critical role in determining performance, yec this feature
of problems is rarely recognized as an important source of variation in performance.

3



A third related point is that using alternative symbolic forms of the response
required may be a good way to measure students' conceptual understanding of
mathematics. Problems requiring numerical responses typically involve procedural
skills as well as conceptual understanding. It is often difficult to disentangle the two,
particularly on tests with multiple-choice response formats. Asking students to think
through a problem requiring a different (non-numerical) representation may yield
less ambiguous information about what students do and do not understand.

Fourth, the kinds of translation between 3ymbolic forms covered during
instruction did not seem to play a major role in this study. Students had practice
with virtually all of the kinds of translation in the problems presented on the test,
yet their performance differed markedly across diffe:ent problems. It is possible
that differences in performance across problems would have been accentuated still
.trther if the instructor had covered fewer kinds of translation. To examine the role

of instruction systematically, future studies should compare performance for
instrtction varying in kinds a translation covered.

" final word should be said about the limitations of this study and the
impgications for the design of future studies. The instructional program examined in
this study was a special one: a summer course for promising minority students in
mathematics. The students who participated in the course had been identified by
previous teachers as having potential for learning mathematics and science.
Furthermore, the instructors in the summer program are specially selected and have
deep commitments to teaching and mathematics and science. As stated above, the
features of this program may have influenced the results. Future studies should
examine a range of student pnpulations and instructional settings, with larger
samples, to determine the impact of these variables on students' ability to solve
mathematical problems preserted in and requiring responses in different symbolic
forms.
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Table 1

Performance on Problems Involving Two Equations and Two Unknowns

Symbolic Form of
Problem as Given

Symbolic Form of Response Required

Numerical Words

SD M SD

Ne
CONCEPTUAL UNDERSTANDING

Words 0.56 0.51 0.75 0.44

Algebraic Equations 0.86 0.36 0.52 0.5)

ARITHMETIC SKILLS

Words 0.83 0.38 0.75 0.44

Algebraic Equations 0.71 0.46 N.A. N.A.

Note: Words --> Numerical = Problem 1 (Figure 1)

Algebraic Equations --> Numerical = Problem 2 (Figure 2)
Words --> Words = Problem 3 (Figure 3)
Algebraic Equations --> Words = Problem 4 (Figure 4)

1 4



Table 2

Performance on Problems Involving Distance-Rate-Time Relationships

Problem SD

APPLICATION OF D=RT FORMULA

5 (One-step word problem) 1.00

6 (Graph --> Numerical (multi-step))

7 (Words --> Numerical (multi-step))

0.71

0.56

0.00

0.46

0.51

NUMERICAL SUBSTITUTION INTO D=RT FORMULA

5 (One-step word problem) 1.00 0.00

6 (Graph --> Numerical (multi-step)) 0.81 0.40

7 (Words --> Numerical (multi-step)) 0.94 0.24

TIME VS. SPEED RELATIONSHIP FROM GRAPH

8 (Graph --> Words) 0.95 0.22

9 (Picture --> Graph) 0.62 0.50

10 (Words --> Graph) 0.50 0.51

11 (Graph --> Picture) 0.38 0.50

15



Figure 1

Two Equations and Two Unknoans: Words -> Numerical Response

John needs 120 yards of wooden planks to build a staircase. He
has $420 to spend. Oak is expensive, costing $4 per yard, pine

costs $3 per yard. Since he cannot afford to make an all-oak

staircase he would like to use &'s much oak as possible. Thir.; means

he must spend all $420.

How much wood should he buy of each type?



Figure 2

Two Equations and Two Unknown= Algebraic Equations Numerical Response

Solve the system of two equations and two unknowns.

x + 2y = 35
5x + y = 40

1 7



Figure 3

Two Equations and Two Unlmowns: Words --> Verbal Response

Tickets for a baseball game cost $10 for box seats and $3 for
regular seats. 100 people came to watch the game and they paid a
total of $750.

Without explain why each of the following
statements cm& be true,

a. 90 tickets for box seats were sold.

b. 60 box seats and 30 regular seats were sold.

18



Figure 4

Two Equatloas and Two Unknowns: Algebraic Equations -> Words

Which word problem is best described by the two equations:

x*y= 15

2x + 3y = 40.

a Jim knows two pieces of gum and three licorice whips costs forty
cents; while any two pieces of candy together cost fifteen cents.

How much does each kind of candy cost?

b. Kate has two buckets. She knows that two small buckets of water

and three large buckets of water contain 3 total of forty gallons. It
takes her fifteen minutes to fill the small and large bucket at the

water pump. How long does it take to fill the small bucket at the

water pump?

c. Paul has fifteen balloons. The red balloons cost $2 apiece and the

silver balloons cost $3 apiece. If all the balloons are either red or

silver and Paul sells all his balloons for $40, how many silver

balloons did he have?

d. Two horse shoes and three cowboy hats cost forty dollars. I want

to buy a total of fifteen shoes and hats. How much is each cowboy

hat?



Figure 5

D=RT: One-Step Problem

Paul can skip six miles per hour. How far a distance can he skip in
four hours?

20



Figure 6

D=RT: Graph --> Numerical Response

The graph below describes Mark's car trip

Y;0

80

70

Speed 60

(mph) 50

40

30

20

10

4

Which expression(s) best estimates the distance traveled?
(More than one answer may be correct.)

a (2x60)*(1.5x40)4(.5x0)

b. (60/2) (40/1.5) (0/.5)

c. (60/1) (40/1.5)* (0/.5) (60/1)

d (1 x 60)*(2 - 40)*(I x 0)4(1 x 60)

21

e. (1 x 60)*(1.5 x40)*(0 x.5)(lx 60)



Figure 7

D=RT: Words Numerical Response

On her motorcycle trip, Jennifer rode for two hours at forty miles

per hour, stopped for lunch for a half hour, rode one and a half hours

at sixty miles per how, and rode for one hour at forty miles per hour.

Which expresslor.
best estimates the distance traveled on her trip?

a (40/2) (0/.5) (60/.5) (40/1)

b. (3x 40)+(.5 x 0)+(1 x 60)+(1 x40)

C. (2 x 40)*(.5 x 0)41.5 x 60)*(1 x40)

d. (2/40) (.5/0)* (.5/60)* (1/40)



FIgure 8

'lime vs. Speed: Graph > Words

The graph below describes the speed of a car on a trip.

9o-

80

70

Speed 60

(mph) SO

40

30

20

10

4

time

Which of the choices below best describes the Journey?

a. Traveled on the local roads, got onto the highway, stopped for
lunch and got back onto the highway.

b. Traveled on local roads, got onto the highway, stopped for lunch

and got back onto local roads.

c. Traveled on the highway, stopped for lunch, got back on the

highway, traveled on local roads.

d. Traveled on the highway, stopped for lunch, traveled on local

roads, and got back onto the highway.
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Figure 9

Time vs. Speed: Picture > Graph

Given the picture below, which graph best describes Sue's bike
trip?

V /

a.

Vt

b.

St iveS -00%."V/
1 u ev-1,

Speed (mph)
SPeed (W)

45 45

40 40

35 35

30 30

25 25

20 20

15 15

10 10

5 5

time V

C.

S
Speed (mph)

peed (mPh)

45

ao ao

35 35

30

25 25

20 20

15 15

10 10

5

time
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a.

Figure 10

Time vs. Speed: Words > Gruph

Jill lives at tne top of tit. MCGoo. She bikes down the mountain,
over a flat lake bed, stops to change a flat tire and bikes up a short
hill to Jack's house.

Which graph best describes her journey?
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Figure 11

Time vs. Speed Graph --> Picture

Linda went for a bike ride. The graph below describes her trip.
Which picture best describes her bike ride?
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